python 2.7 - scipy.minimize 'SLSQP' appears to return sub optimal weights values -


im trying run minimization function ensemble of logloss values, when using scipy.minimize function appears return sub optimal value.

the data comes in pandas table:

click, prob1, prob2, prob3

0, 0.0023, 0.0024, 0.012

1, 0.89, 0.672, 0.78

0, 0.43, 0.023, 0.032

from scipy.optimize import minimize  math import log import numpy np import pandas pd  def logloss(p, y):   p = max(min(p, 1 - 10e-15), 10e-15)   return -log(p) if y == 1 else -log(1 - p)  def ensemble_weights(weights, probs, y_true):   loss = 0   final_pred = []   prob_length = len(probs)    in range(prob_length):     w_sum = 0     index, weight in enumerate(weights):       w_sum += probs[i][index] * weight        final_pred.append(w_sum)      index, pred in enumerate(final_pred):       loss += logloss(pred, y_true[index])       print loss / prob_length, 'weights :=', weights   return loss / prob_length   ## w0 initial guess minimum of function 'fun' ## initial guess weights equal w0 = [1/probs.shape[1]] * probs.shape[1]  # ## sets bounds on weights, between 0 , 1 bnds = [(0,1)] * probs.shape[1] ## sets constraints on weights, must sum 1 ## or, in other words, 1 - sum(w) = 0 cons = ({'type':'eq','fun':lambda w: 1 - np.sum(w)})  weights = minimize(     ensemble_weights,     w0,     (probs,y_true),     method='slsqp',     bounds=bnds,     constraints=cons ) ## sanity check, make sure weights in fact sum 1 print("weights sum %0.4f:" % weights['fun']) print weights['x'] 

to debug i've used print statement in function returns following.

0.0101326509533 weights := [ 1. 0. 0.]

0.0101326509533 weights := [ 1. 0. 0.]

0.0101326509702 weights := [ 1.00000001 0. 0. ]

0.0101292476389 weights := [ 1.00000000e+00 1.49011612e-08 0.00000000e+00]

0.0101326509678 weights := [ 1.00000000e+00 0.00000000e+00 1.49011612e-08]

0.0102904525781 weights := [ -4.44628778e-10 1.00000000e+00 -4.38298620e-10]

0.00938612854966 weights := [ 5.00000345e-01 4.99999655e-01 -2.19149158e-10]

0.00961930211064 weights := [ 7.49998538e-01 2.50001462e-01 -1.09575296e-10]

0.00979499597866 weights := [ 8.74998145e-01 1.25001855e-01 -5.47881403e-11]

0.00990978430231 weights := [ 9.37498333e-01 6.25016666e-02 -2.73943942e-11]

0.00998305685424 weights := [ 9.68748679e-01 3.12513212e-02 -1.36974109e-11]

0.0100300175342 weights := [ 9.84374012e-01 1.56259881e-02 -6.84884901e-12]

0.0100605546439 weights := [ 9.92186781e-01 7.81321874e-03 -3.42452299e-12]

0.0100807513117 weights := [ 9.96093233e-01 3.90676721e-03 -1.71233067e-12]

0.0100942930446 weights := [ 9.98046503e-01 1.95349723e-03 -8.56215139e-13]

0.0101034594634 weights := [ 9.99023167e-01 9.76832595e-04 -4.28144378e-13]

0.0101034594634 weights := [ 9.99023167e-01 9.76832595e-04 -4.28144378e-13]

0.0101034594804 weights := [ 9.99023182e-01 9.76832595e-04 -4.28144378e-13]

0.0101034593149 weights := [ 9.99023167e-01 9.76847497e-04 -4.28144378e-13]

0.010103459478 weights := [ 9.99023167e-01 9.76832595e-04 1.49007330e-08]

weights sum 0.0101:

[ 9.99023167e-01 9.76832595e-04 -4.28144378e-13]

my expectation optimal weights returned should be: 0.00938612854966 weights := [ 5.00000345e-01 4.99999655e-01 -2.19149158e-10]

can see glaring issue?

fyi -> code hack of kaggle otto script https://www.kaggle.com/hsperr/otto-group-product-classification-challenge/finding-ensamble-weights

solved

options = {'ftol':1e-9} 

as part of minimize function


Comments

Popular posts from this blog

How has firefox/gecko HTML+CSS rendering changed in version 38? -

android - CollapsingToolbarLayout: position the ExpandedText programmatically -

Listeners to visualise results of load test in JMeter -